Name: Solutions

Date: 11/05/2018

1 Ordering in solids, reciprocal lattices, and wave scattering

Problem 1. Given the NaCl crystal shown in Fig. 1 below, determine the distance from a sodium atom to the nearest chlorine atom, assuming the lattice constant is a. Do the same for the nearest sodium atom.

Figure 1: NaCl crystal structure.

Problem 2. Given a direct lattice vector \vec{R} , write down the single mathematical equation sufficient and necessary to prove \vec{G} is a reciprocal lattice vector. Assuming \vec{G} is a reciprocal lattice vector, determine the (real-space) spacing, d, between adjacent planes in a family of lattice planes.

Problem 3. Show that the reciprocal lattice of a face-centered cubic lattice is a body-centered cubic lattice, and determine the lattice constant. Recall the reciprocal lattice vector, \vec{b}_1 , is related to direct lattice vectors \vec{a}_2 and \vec{a}_3 by

$$\vec{b_1} = \frac{2\pi \vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \tag{1}$$

with similar relations for the other two reciprocal lattice vectors.

Problem 4. From the table below, determine the entries of the empty column $\{hkl\}$. What kind of cubic crystal is this? See table of selection rules on page 2, if necessary.

2θ	$N = h^2 + k^2 + l^2$	{hkl}
22.7°	3	
26.3°	4	
37.7°	8	
44.3°	11	
46.2°	12	

Table 1: Results from a powder diffraction experiment using X-rays.

1) Na > Cl distance =
$$\frac{\alpha}{2}$$

Na > Na distance = $\frac{\alpha}{2}$

· distance between planes

$$d = \frac{2T}{|\vec{G}|}$$

$$\vec{a}_1 = \frac{1}{2} \alpha (\hat{y} + \hat{z})$$

$$\vec{a}_2 = \frac{1}{2} \alpha (\hat{x} + \hat{z})$$

$$\vec{a}_3 = \frac{1}{2} \alpha (\hat{x} + \hat{z})$$

$$\int_{0}^{2} = \frac{2\pi}{\alpha} (-\hat{x} + \hat{y} + \hat{z})$$

$$\int_{0}^{2} = \frac{2\pi}{\alpha} (\hat{x} - \hat{y} + \hat{z})$$

$$\int_{0}^{2} = \frac{2\pi}{\alpha} (\hat{x} + \hat{y} - \hat{z})$$

$$\int_{0}^{2} = \frac{2\pi}{\alpha} (\hat{x} + \hat{y} - \hat{z})$$

BCC with lattice const.

$$26 \qquad N = h^{2} + k^{2} + l^{2} \qquad 5h k e s$$

$$22.7^{\circ} \qquad 3 \qquad \qquad 1 | 1 |$$

$$26.3^{\circ} \qquad 4 \qquad \qquad 200$$

$$37.7^{\circ} \qquad 8 \qquad \qquad 220$$

$$44.3^{\circ} \qquad 11 \qquad \qquad 3 | 1 |$$

$$46.2^{\circ} \qquad 12 \qquad \qquad 222$$

· this is an FCC crystal

Bonus
$$g(r) = I S(r-an)$$

. take the Farier transform

$$=\frac{2TT}{|a|}\sum_{m} \xi(k-2TTm/a)$$