# PHY481/581

Wed. Oct. 17, 2018

#### Wigner-Seitz Cell



#### 2D Bravais Lattice Types (5)



$$|a| = |b|, \ \varphi = 90^{\circ}$$
  
Square





$$|a| \neq |b|$$
,  $\varphi = 90^{\circ}$   
Rectangular



|a| = |b|,  $\varphi = 120^{\circ}$ Hexagonal



 $|a| \neq |b|$ ,  $\varphi \neq 90^{\circ}$ Centerd Rectangular



#### 3D Bravais Lattice Types (14)



#### $a\neq b\neq c$ $a\neq b\neq c$ $\beta \neq 90^{\circ}$ $\alpha, \gamma = 90^{\circ}$ $\beta \neq 90^{\circ}$ $\alpha, \gamma = 90^{\circ}$ $a\neq b\neq c$ $\alpha, \beta, \gamma \neq 90^{\circ}$ Cubic Crystals Triclinic Monoclinic $\substack{\alpha\neq b\neq c\\\alpha=\beta=\gamma=90^\circ}$ $a\neq b\neq c$ $\alpha=\beta=\gamma=90^{\circ}$ $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$ *a≠b≠c* α=β=γ=90° Orthorhombic *a=b≠c* α, β=90°: γ=120° a=b=c $\alpha=\beta=\gamma\neq 90^{\circ}$ $a=b\neq c$ $\alpha=\beta=\gamma=90^{\circ}$ $a=b\neq c$ $\alpha=\beta=\gamma=90^{\circ}$ Tetragonal Trigonal / Hexagonal P Trigonal R a=b=ca=b=ca=b=c $\alpha = \beta = \gamma = 90^{\circ}$ Cubic

#### Cubic Crystals











Face-centered cubic (fcc) lattice with a two-atom basis or as two interpenetrating face centered cubic lattices.





## Wigner-Seitz Cell for BCC



## Wigner-Seitz Cell for BCC



#### CsCl



# Diamond







#### Diamond



# Calcite – trigonal hexagonal





## Calcite – "birefringence"





#### Bismuth Hopper Crystal



