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NEWTON'S MATHEMATICAL PRINCIPLES

LEMMAY

All homologous sides of similar figures, whether curvilinear or rectilinear,
are proportional; and the areas are as the squares of the homologous sides.

LEMMA VI
o If any arc ACB, given in posi-
tion, is subtended by its chord
AB, and in any point A, in the
middle of the continued curva-
ture, is touched by a right line
AD, produced both ways; then
if the points A and B approach
one another and meet, I say,
the angle BAD, contained be-
r tween the chord and the tan-
gent, will be diminished in infinitum, and ultimately will vanish.

For if that angle does not vanish, the arc ACB will contain with the tan-
gent AD an angle equal to a rectilinear angle; and therefore the curvature
at the point A will not be continued, which is against the supposition.

LEMMA VII

The same things being supposed, I say that the ultimate ratio of the arc,
chord, and tangent, any one to any other, is the ratio of equality.

For while the point B approaches towards the point A, consider always
AB and AD as produced to the remote points 4 and 4; and parallel to the
secant BD draw &d; and let the arc Acb be always similar to the arc ACB.
Then, supposing the points A and B to coincide, the angle ZA% will vanish,
by the preceding Lemma; and therefore the right lines A, Ad (which are
always finite), and the intermediate arc Acb, will coincide, and become
equal among themselves. Wherefore, the right lines AB, AD, and the in-
termediate arc ACB (which are always proportional to the former), will
vanish, and ultimately acquire the ratio of equality. Q.E.D.

Cor. 1. Whence if through B we draw BF parallel to the tangent, always
cutting any right line AF passing through A in F, this line BF will be
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ul.tlmatcly in the ratio of equality A £\ /o
with the evanescent arc ACB; be- C

cause, completing the parallelogram /’; \X/
AFBD, it is always in a ratio of [\& BN
equality with AD.

Cor. 1. And if through B and A more right lines are drawn, as BE, BD,
AF, AG, cutting the tangent AD and its parallel BF; the ultimate ratio of
all the abscissas AD, AE, BF, BG, and of the chord and arc AB, any one to
any other, will be the ratio of equality.

Coxr. 1. And therefore in all our reasoning about ultimate ratios, we may
freely use any one of those lines for any other.

LEMMA VIII

If the right lines AR, BR, with the arc ACB, the chord AB, and the tangent
AD, constitute three triangles RAB, RACB, RAD, and the points A and B
approach and meet: I say, that the ultimate form of these evanescent tri-
angles is that of similitude, and their ultimate ratio that of equality.

For while the point B approaches towards the point A, consider always
AB, AD, AR, as produced to the remote points b,d,and 7, and rb4d as drawn
A D o parallel to RD, and let the arc
~ Ach be always similar to the
arc ACB. Then supposing the
points A and B to coincide, the
angle #Ad will vanish; and
therefore the three triangles
rAb, rAch, rAd (which are
always finite), will coincide,
and on that account become
r both similar and equal. And
therefore the triangles RAB, RACB, RAD, which are always similar and
proportional to these, will ultimately become both similar and equal
among themselves. Q.E.D. ;
Cor. And hence in all reasonings about ultimate ratios, we may use any
one of those triangles for any other.
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LEMMA IX

If aright line AE, and a curved line ABC, both given by position, cut each
other in a given angle, A; and to that right line, in another given angle,
BD, CE are ordinately applied, meeting the curve in B, C; and the points
B and C together approach towards and meet in the point A: 1 say, that the
areas of the triangles ABD, ACE, will ultimately be to each other as the
squares of homologous sides.

For while the points B, C, approach towards the point A, suppose always
AD to be produced to the remote points & and e, so as Ad, Ae may be pro-

portional to AD, AE; and the ordinates @5, ec, to be drawn parallel to the
ordinates DB and EC, and meeting

AB and AC produced in & and ¢.
Let the curve Abe be similar to the
curve ABC, and draw the right
line Ag so as to touch both curves
in A, and cut the ordinates DB, EC,
db, ec, in F, G, f, g. Then, suppos--
ing the length Ae to remain the
same, let the points B and C meet
in the point A; and the angle cAg
vanishing, the curvilinear areas

rectilinear arcas Afd, Age; and
therefore (by Lem. v) will be one to the other in the duplicate ratio of the

sides Ad, Ae. But the areas ABD, ACE are always proportional to these: :
~areas; and so the sides AD, AE are to these sides. And therefore the areas -

ABD, ACE are ultimately to each other as the squares of the sides AD, AE.

GED.
LEMMAX

The spaces which a body describes by any finite force urging it, whether
that force is determined and immutable, or is continually angmented or
continually diminished, are in the very beginning of the motion to each
other as the squares of the times.

Let the times be represented by the lines AD, AE, and the velocities gen-
erated in those times by the ordinates DB, EC. The spaces described with -

Abd, Ace will coincide with the e
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BOOK I:. THE MOTION OF BODIES 35

these velocities will be as the areas ABD, ACE, described by those ordinates,
that is, at the very beginning of the motion (by Lem. 1x), in the duplicate
ratio of the times AD, AE.QED.

Cor. 1. And hence one may easily infer, that the errors of bodies describ-
ing similar parts of similar figures in proportional times, the errors being
generated by any equal forces similarly applied to the bodies, and measured
by the distances of the bodies from those places of the similar figures, at
which, without the action of those forces, the bodies would have arrived in
those proportional times—are nearly as the squares of the times in which

L AL

4

[ETTY S

they are generated.

Cor. 11. But the errors that are generated by proportional forces, similarly
applied to the bodies at similar parts of the similar figures, are as the product
of the forces and the squares of the times.

Cor. 11 The same thing is to be understood of any spaces whatsoever
described by bodies urged with different forces; all which, in the very be-
ginning of the motion, are as the product of the forces and the squares of
the times.

Cor. 1v. And therefore the forces are directly as the spaces described in
the very beginning of the motion, and inversely as the squares of the times.

Coz. v. And the squares of the times are directly as the spaces described,
and inversely as the forces.

SCHOLIUM

If in comparing with each other -ndeterminate quantities of different
sorts, any one is said to be directly or inversely as any other, the meaning is,
that the former is augmented or diminished in the same ratio as the latter,
or as its reciprocal. And if any one is said to be as any other two or Mmore,
directly or inversely, the meaning is, that the first is augmented or dimin-
sshed in the ratio compounded of the ratios in which the others, or the
reciprocals of the others, are augmented or diminished. Thus, if A is said
to be as B directly, and C directly, and D inversely, the meaning is, that A

is augmented or diminished in the same ratio as B- C--}IS, that is to say,

BC : . :
that A and 5 are to each other in a given ratio.
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Book Two
THE MOTION OF BODIES

(IN RESISTING MEDIUMS)

SECTIONII

The motion of bodies that are resisted in the ratio of the velocity.

PROPOSITION L THEOREM I

If a body is resisted in the ratio of its velocity, the motion lost by resistance

is as the space gone over in its motion.

on lost in each equal interval of time is as the velocity,

that s, as the small increment of space gone over, then, by composition, the
motion lost in the whole time will be as the whole space gone over. CLED.

Cor. Therefore if the body, destitute of all gravity, move by its innate
force only in free spaces, and there be given both its whole motion at the
, and also the motion remaining after some part of the way is

there will be given also the whole space which the body can de-
For that space will be to the space now describ;d
he part lost of that motion. . -

For since the moti

beginning
gone Over,
scribe in an infinite time.
as the whole motion at the beginning istot

LEMMA I

Quantities proportional to their differences are continually proportional.

Let A:A-B=B:B—C:C:C—Dz&cc.;

then, by subtraction,
' A:B=B:C=C:D=&c. O.ED.
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NEWTON'S MATHEMATICAL PRINCIPLES

PROPOSITIONII. THEOREM 11

If a body is resisted in the ratio of its velocity, and moves, by its inertia only,
through an homogeneous medium, and the times be taken equal, the veloci-
ties in the beginning of each of the times are in a geometrical progression,
and the spaces described in each of the times are as the velocities.

Cask 1. Let the time be divided into equal intervals; and if at the very
beginning of each interval we suppose the resistance to act with one single
impulse which is as the velocity, the decrement of the velocity in each of
the intervals of time will be as the same velocity. Therefore the velocities
are proportional to their differences, and therefore (by Lem. 1, Book 11)
continually proportional. Therefore if out of an equal number of intervals
there be compounded any equal portions of time, the velocities at the begin-
ning of those times will be as terms in a continued progression, which are
taken by jumps, omitting everywhere an equal number of intermediate

terms. But the ratios of these terms are compounded of the equal ratios of -

the intermediate terms equally repeated, and thercfore are equal. There-
fore the velocities, being proportional to those terms, are in geometrical
progression. Let those equal intervals of time be diminished, and their
number increased iz infinitum, so that the impulse of resistance may be-
come continual; and the velocities at the beginnings of equal times, always
continually proportional, will be also in this case continually proportional.
OED}

Case 2. And, by division, the differences of the velocities, that is, the parts
of the velocities lost in each of the times, are as the wholes; but the spaces
described in each of the times are as the lost parts
of the velocities (by Prop. 1, Book 1), and there-
G fore are also as the wholes. Q.E.D.

Cor. Hence if to the rectangular asymptotes
B AC, CH, the hyperbola BG is described, and AB,
DG be drawn perpendicular to the asymptote
* = = AC, and both the velocity of the body, and the
resistance of the medium, at the very beginning of the motion, be expressed
by any given line AC, and, after some time is elapsed, by the indefinite line
DC; the time may be expressed by the area ABGD, and the space described
[ Appendix, Note 28.]
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BOOK II: THE MOTION OF BODIES 237

me by the line AD. For £ that area, by the motion of the point D,
increased in the same manner as the tirne, the right line DC
1 ratio in the same manner as the velocity; and
ual times, will decrease in the

in that ti
be uniformly
will decrease ina geometrica

the parts of the right line AC, described in eq

same ratio.

PROPOSITION IIL PROBLEM I

mogeneous medium, ascends

To define the motion of abody which,in an ho
e ratio of its velocity, and

or descends in a right line, and is resisted in th
scted upon by an uni form force of gravity.

The body ascending, let the gravity be represented by any given rectangle
BACH; and the resistance of the medium, at the beginning of the ascent,
by the rectangle BADE, taken on the contrary side of the right line AB.

Through the point B, with
the rectangular asymptotes b /
AC, CH, describe an hyper-
bola, cutting the perpendicu-
lars DE, de in G, g; and the
body ascending will in the =
time DG gd describe the space E e B/ -
EGge; in the time DGBA,
the space of the whole ascent G
EGB: in the time ABKL the p—G—— A £ L.
space of descent BFK; and in
the time 1K 4i the space of descent KFfk; an
(proportional to the resistance of the medium)
will be ABED, ABed, o, ABFL, ABfi respectively; and the greatest velocity
which the body can acquire by descending will be BACH.

For let the rectangle BACH be resolved into innumerable rectangles A%,
K/, Lm, Mn, &c., which shall be as the increments of the velocities pro-
duced in so many equal times; then will o, Ak, Al, Am, An, &c., be as the
whole velocities, and therefore (by supposition) as the resistances of the
medium in the beginning of each of the equal times. Make AC to AK, or
ABHC to AB£K, as the force of gravity to the resistance in the beginning
of the second time; then from the force of gravity subtract the resistances,

¢

d the velocities of the bodies
in these periods of time
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238 NEWTON'S MATHEMATICAL PRINCIPLES

and ABHC, KkHC, LIHC, MmHC, &c., will be as the absolute forces with
which the body is acted upon in the beginning of each of the times, and
therefore (by Law 1) as the increments of the velocities, that is, as the rec-
tangles Ak, K/, Lm, M», &c., and
therefore (by Lem. 1, Book 1) in
a geometrical progression. There-
fore, if the right lines K, LI, Mm,
N#, &c., are produced so as to meet
the hyperbola in ¢, 7, s, #, &c., the
arcas ABgK, KgrL, LrsM, MsN,
&c., will be equal, and therefore
analogous to the equal times and
N ¢ equal gravitating forces. But the

x area ABgK (by Cor. m, Lem. vu
and vu, Book 1) is to the area Bkg as Kg to Y%kg, or AC to ¥%AK, that
is, as the force of gravity to the resistance in the middle of the first time.
And by the like reasoning, the areas gKLr, rLMs, sMN¢, &c., are to the
areas qklr, rlms, smnt, &c., as the gravitating forces to the resistances in the
middle of the second, third, fourth time, and so on. Therefore since the
equal areas BAK g, gKLr, rLM;s, sMN, &c., are analogous to the gravitating
forces, the arcas Bkg, gklr, rims, smnt, &c., will be analogous to the resist-
ances in the middle of each of the times, that is (by supposition), to the
velocities, and so to the spaces described. Take the sums of the analogous
quantities, and the areas Bkg, Blr, Bms, Bnz, &c., will be analogous to the
whole spaces described; and also the areas ABgK, ABrL, ABsM, AB/N,
&c., to the times. Therefore the body, in descending, will in any time ABrL
describe the space B/r, and in the time L72N the space r/nz. Q.E.D. And the
like demonstration holds in ascending motion.

Cor. 1. Therefore the greatest velocity that the body can acquire by falling
is to the velocity acquired in any given time as the given force of gravity
which continually acts upon it to the resisting force which opposes it at the
end of that time.

Cor. 11. But the time being augmented in an arithmetical progression,
the sum of that greatest velocity and the velocity in the ascent, and also
their difference in the descent, decreases in a geometrical progression.
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Cor. 111 Also the differences of the spaces, which are described in equal
difierences of the times, decrease in the same geometrical progression.

Cor. 1v. The space described by the body is the difference of two spaces,
whereof one is as the time taken from the beginning of the descent, and
the other as the velocity; which [spaces] also at the beginning of the de-
scent are equal among themselves.

. PROPOSITION IV. PROBLEM II

Supposing the force of gravity in any homogencous medium to be uniforn,
and to tend perpendicularly to the plane of the horizon: to define the
motion of a projectile therein, whick suffers resistance proportional to its
velocity.

Let the projectile go from any place D in the direction of
any right line DP, and let its velocity at the beginning of
the motion be represented by the length DP. From the
point P Jet fall the perpendicular PC on the horizontal line
DC, and cut DC in A, so that DA may be to AC as the
vertical component of the resistance of the medium arising
from the motion upwards at the beginning,
to the force of gravity; or (which comes to
the same) so that the rectangle under DA and
DP may be to that under AC and CP as the
whole resistance at the beginning of the mo-
tion, to the force of gravity. With the asymp-
totes DC, CP describe any
hyperbola GTBS cutting the
perpendiculars DG, ABin G
and B; complete the parallel-
ogram DGKC, and let its side
GK cut AB in Q. Take a line
N in the same ratio to QB as
DCisinto CP; and from any
point R of the right line DC
erect RT perpendicular to it
meeting the hyperbola in T,
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240 NEWTON’S MATHEMATICAL PRINCIPLES

and the right lines EH, GK, DP in L, 2, and V; in that perpendicular take

Vrequal to E-GNE‘, or, which is the same thing, take R# equal to G;I\}I ; and
the projectile in the time DRTG will arrive at the point r, describing the
curved line DraF, the locus of the point 7; thence it will come to its greatest

height # in the perpendicular AB; and afterwards ever a
asymptote PC. And its velocit
the curve. Q.E.L

For N:QB:DC:CP:DR:RV,

and therefore RV is equal to DRI;IQB, and Rr (_'that is, RV-Vr, or

2h QII?I_IGT 1s equal to 2 ABI;I_ RDGT. Now let the time be rep-
resented by the area RDGT, and (by Laws, Cor. ) distinguish the mo-
tion of the body into two others, one of ascent, the other lateral. And
since the resistance is as the motion, let that also be distinguished into two
parts proportional and contrary to the parts of the motion: and therefore
the length described by the lateral motion will be (by Prop. 11, Book 1)
as the line DR, and the height (by Prop. 1, Book 1) as the area DR - AB -
RDGT, that is, as the line R, But in the very beginning of the motion
the area RDGT is equal to the rectangle DR - AQ, and therefore that line
Rr (or D‘*—*——~—R -AB;IDR .AQ) will then be to DR as AB~AQor QBto N,
that is, as CP to DC; and therefore as the motion upwards to the motion
lengthwise at the beginning. Since, therefore, Rr is always as the height,
and DR always as the length, and R is to DR at the beginning as the

height to the length, it follows, that Rr is always to DR as the height to
will move in the line DraF, which

the length; and therefore that the body
is the locus of the point 7. Q.ED.

Cor. 1. Therefore Rr is equal to QBFAE -——I%I; and therefore if RT

pproach to the
¥ in any point » will be as the tangent 7L to

be produced to X so that RX may be equal to 9%, that is, if the par-

allelogram ACPY be completed, and DY cutting CP in Z be drawn, and
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RT be produced till it meets DY in X; Xr will be equal to RDI\? i)

therefore proportional to the time.

Cor. 1. Whence if innumerable lines CR, or, which is the same, innu-
merable lines ZX, be taken in a geometrical progression, there will be as
many lines Xr in an arithmetical progression. And hence the curve DraF
is easily delineated by the table of logarithms.

Cor. 11 If a parabola be constructed to the vertex D, and the diameter
DG produced downwards, and its latus rectum is to 2DP as the whole
resistance at the beginning of the motion to the gravitating force, the
velocity with which the body ought to go from the place D, in the direction
of the right line DP, so as in an uniform resisting medium to describe

the curve DraF, will be the P
same as that with which it
ought to go from the same
place D in the direction of
the same right line DP, so
as to describe a parabola in
a nonresisting medium. For
the latus rectum of this parab-
ola, at the very beginning of

a

the motion, is ——; and Vr1s

Vr
tGT DR-Tz
N . ptaN
line which, if drawn, would touch the hyperbola GTS in G, is parallel to

DK, and therefore Tz is CI;CDR, and N 1s 0B DC. And therefore Vr is

Di{DCCIng P, that is (because DR and DC, DV and DP are

proportionals), to DV C.:,K.CP' and the latus rectum DY omes out
4 2DP*-QB ’ Vr

2DP*- QB ) :
—-é—K_—CQP— , that is (because QB and CK, DA and AC are propornonal),
2DP*- DA : :

“AC CP’ and therefore is to 2DP as DP - DA to CP- AC; that 15, as the
resistance to the gravity. Q.E.D.
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242 NEWTON'S MATHEMATICAL PRINCIPLES

Cor. 1v. Hence if a body be projected from any place D with a given
velocity, in the direction of a right line DP given by position, and the resist-
ance of the medium, at the beginning of the motion, be given, the curve
DraF, which that body will describe, may be found. For the velocity being
given, the latus rectum of the parabola is given, as is well known. And
taking 2DP to that latus rectum, as the force of gravity to the resisting
force, DP is also given. Then cutting DC in A, so that z
CP - AC may be to DP - DA in the same ratio of the gravity
to the resistance, the point A will be given. And hence the
curve DraF is also given.

Cor. v. And conversely, if the curve DraF be given, there
will be given both the velocity of the body and the resist-
ance of the medium in each of the places 7.

For the ratio of CP- AC to DP* DA being
given, there is given both the resistance of the
medium at the beginning of the motion, and

the latus rectum of the parabola; and thence

the velocity at the beginning of the motion is
given also. Then from the length of the tan- X,
gent 7L there is given both

the velocity proportional to

it, and the resistance propor- .
tional to the velocity in any
place . v,

Cor. v1. But since the length >
2DP is to the latus rectum of E sl
the parabola as the gravity to
the resistance in D, and, from
the velocity augmented, the
resistance is augmented in the
same ratio, but the latus rectum of the parabola is augmented as the square
of that ratio, it is plain that the length 2DP is augmented in that simple
ratio only; and is therefore always proportional to the velocity; nor will 1t
be augmented or diminished by the change of the angle CDP, unless the
velocity be also changed.
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BOOK II: THE MOTION OF BODIES 243

Cor vir. Hence appears the method of determining the curve DraF
nearly from the phenomena, and thence finding the resistance and velocity
with which the body is projected. Let two similar and equal bodies be pro-

jected with the same velocity,
from the place D, in different
angles CDP, CDp; and let the
places F, f, where they fall B
upon the horizontal plane
DC, be known. Then taking
any length for DP or Dp sup-
pose the resistance in D to be
to the gravity in any ratio
whatsoever, and let that ratio
be represented by any length
S\. Then, by computation,
fom that assumed length
DP, find the lengths DF, Df;

P

and from the ratio _gli:’ found £ Fim c
by calculation, subtract the
<ame ratio as found by experi- _ NX M

g MM

ment; and let the difference S

be represented by the perpen- \NL
dicular MN. Repeat the same

2 second and a third time, by assuming always a new ratio SM of the
esistance to the gravity, and collecting a new difference MN. Draw the
positive differences on one side of the right line SM, and the negative on
the other side; and through the points N, NN, N, draw a regular curve
N\N, cutting the right line SMMM in X, and SX will be the true ratio
of the resistance to the gravity, which was to be found. From this ratio
the length DF is to be found by calculation; and a length, which is to the
assumed length DP as the length DF known by experiment to the length
DF just now found, will be the true length DP. This being known, you
will have both the curved line DraF which the body describes, and also
the velocity and resistance of the body in each place.
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244 NEWTON’S MATHEMATICAL PRINCIPLES

SCHOLIUM

However, that the resistance of bodies is in the ratio of the velocity, 1s
more a mathematical hypothesis than a physical one. In mediums void
of all tenacity, the resistances made to bodies are as the square of the
velocities. For by the action of a swifter body, a greater motion in propor-
tion to a greater velocity is communicated to the same quantity of the
medium in a less time; and in an equal time, by reason of a greater quan-
tity of the disturbed medium, a motion is communicated as the square of
the ratio greater; and the resistance (by Law 1t and 1) is as the motion
communicated. Let us, therefore, see what motions arise from this law of
resistance.




Book Three
SYSTEM OF THE WORLD

(IN MATHEMATICAL TREATMENT)

2

~ THE PRECEDING B00Ks I have laid down the principles of philosophy;

pw_{g&tg;phdmophmalbmr\ngfb_gﬁlﬁmal :dsut?h., namely, as we may

Build our reasonings upon in philosophical inquiries. These principles
~re the laws and conditions of certain motions, and powers or forces, which
chiefly have respect to philosophy; but, lest they should have appeared of
themselves dry and barren, I have illustrated them here and there with some
philosophical scholiums, giving an account of such things as are of more
general nature, and which philosophy seems chiefly to be founded on; such
as the density and the resistance of bodies, spaces void of all bodies, and the
motion of light and sounds. It remains that, from the same principles, I now
demonstrate the frame of the System of the World. Upon this subject I had,
indeed, composed the third Book in a popular method, that it might be read
by many; but afterwards, considering that such as had not sufficiently en-
tered into the principles could not easily discern the strength of the conse-
quences, nor lay aside the prejudices to which they had been many years
accustomed, therefore, to prevent the disputes which might be raised upon
such accounts, I chose to reduce the substance of this Book into the form of
Propositions (in the mathematical way), which should be read by those
only who had first made themselves masters of the principles established in
the preceding Books: not that I would advise anyone to the previous study
of every Proposition of those Books; for they abound with such as might
cost too much time, even to readers of good mathematical learning. It is
enough if one carefully reads the Definitions, the Laws of Motion, and the
first three sections of the first Book. He may then pass on to this Book, and
consult such of the remaining Propositions of the first two Books, as the
references in this, and his occasions, shall require.

[397]
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RULES OF REASONING
IN PHILOSOPHY

RULE 1

We are to admit no more causes of natural things than such as are both true
and sufficient to explain their appearances.

To this purpose the philosophers say that Nature does nothing in vain,
and more is in vain when less will serve; for Nature is pleased with sim-
plicity, and affects not the pomp of superfluous causes.

» , .
RULE II : /A

Therefore to the same naturdl effects we must, as far as possible, assi gn the
same causes.

As to respiration in a man and in a beast; the descent of stones in Ezrope
and in America; the light of our culinary fire and of the sun; the reflection
of light in the earth, and in the planets.

RULE III

The qualities of bodies, which admit neither intensification nor remission
of degrees, and which are found to belong to all bodies within the reach of

our experiments, are to be esteemed the universal qualities of all bodies
whatsoever.

For since the qualities of bodies are only known to us by experiments, we
are to hold for universal all such as universally agree with experiments;
and such as are not liable to diminution can never be quite taken away.
We are certainly not to relinquish the evidence of experiments for the sake
of dreams and vain fictions of our own devising; nor are we to recede from
the analogy of Nature, which is wont to be simple, and always consonant to
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itself, We no other way know the extension of bodies than by our senses,
nor do these reach it in all bodies; but because we perceive extension in
Al that are sensible, therefore we ascribe it universally to all others also.
That abundance of bodies are hard, we learn by experience; and because
the hardness of the whole arises from the hardness of the parts, we there-
fore justly infer the hardness of the undivided particles not only of the
bodies we feel but of all others. That a1l bodies are impenetrable, we gather
not from reason, but from sensation. The bodies which we handle we find
impenetrable, and thence conclude impenetrability to be an universal prop-
erty of all bodies whatsoever. That all bodics are movable, and endowed
with certain powers (which we call the inertia) of persevering in their
motion, or in their rest, we only infer from the like properties observed in
the bodies which we have seen. The extension, hardness, impenetrability,
mobility, and inertia of the whole, result from the extension, hardness, im-
penetrability, mobility, and inertia of the parts; and hence we conclude the
least particles of all bodies to be also all extended, and hard and impene-
trable, and movable, and endowed with their proper inertia. And this is
the foundation of all philosophy. Moreover, that the divided but contiguous
particles of bodies may be separated from one another, is matter of observa-
tion; and, in the particles that remain undivided, our minds are able to dis-
tinguish yet lesser parts, as is mathematically demonstrated. But whether
the parts so distinguished, and not yet divided, may, by the powers of
Nature, be actually divided and separated from one another, we cannot cer-

tainly determine. Yet, had we the proof of but one experiment that any

undivided particle, in breaking a hard and solid body, suffered a division,
we might by virtue of this rule conclude that the undivided as well as the
divided particles may be divided and actually separated to infinity. '
" Lastly, if it universally appears, by experiments and astronomical obser-
vations, that all bodies about the earth gravitate towards the earth, and that
in proportion to the quantity of matter which they severally contain; that
the moon likewise, according to the quantity of its matter, gravitates towards
the carth ; that, on the other hand, our sea gravitates towards the moon; and
all the planets one towards another; and the comets in like manner towards
the sun; we must, in consequence of this rule, universally allow that all
bodies whatsoever are endowed with a principle of mutual gravitation.
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400
For the argument from the appearances concludes with more force for the
universal gravitation of all bodies than for their impenetrability; of which,
among those in the celestial regions, we have no experiments, nor any man-
ner of observation. Not that I affirm gravity to be essential to bodies: by
their is insita 1 mean nothing but their inertia. This is immutable. Their

gravity is diminished as they recede from the earth.

RULE IV

In experimental philosophy we are to look upon propositions inferred by
general induction from phenomena as accurately or very nearly true, not-
withstanding any contrary hypotheses that may be imagined, till such time
as other. phenomena occur, by which they may either be made more accu-

rate, or liable to exceptions.
This rule we must follow, that the argument of induction may not be

evaded by hypotheses.

[NotE: In the following parts of Book 111, scattered words and phrases in italics {except in Latia expres-
sions and in names of places, months, persons, and writings) are, in Motte's translation, interpolations
of words and phrases not in the Latin text of the Principia; and a few are departures from a literal

translation of the Latin.]
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PHENOMENA

PHENOMENON I

That the circumjovial planets, by radii drawn to Jupiter's centre, describe
areas proportionadl to the times of description; and that their periodic times,
the fixed stars being at rest, are as the %sth power of their distances from its

cenire.

This we know from astronomical observations. For the orbits of these

planets differ but insensibly from circles concentric to Jupiter; and their
be uniform. And all astronomers agree

motions in those circles are found to
power of the semidiameters of their

that their periodic times are as the %th
orbits; and so it manifestly appears from the following table.

The periodic times of the satellires of Jupiter.
19. 18h, 27m, 345, 34, 130 13™. 42, od, 3b, 42m. 365, 169, 16h. 32™. .

The distances of the satellites from Jupiter's centre.

1 2 3 4
From the observations of:
Borellis oritiise 8, | 14 242/,
Townly by the micrometer| 5. 52 8.78 | 13.47 | 24.72 Semi-
Cassini by the telescope...| 5 8 13 23 diameter of
Cassini &y the eclipse of| Fupiter
the satellites. .o 52/, 9 1423/50 253/10
[ From the periodic times.... 5.667 | 9.017 | 14.384 | 25.2399

Mr. Pound hath determined, by the help of excellent micrometers, the
diameters of Jupiter and the elongation of its satellites after the following
manner. The greatest heliocentric elongation of the fourth satellite from

[4or]
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S

Jupiter’s centre was taken with a micrometer in a 15-foot telescope, and at
the mean distance of Jupiter from the earth was found about 8 16”. The
elongation of the third satellite was taken with a micrometer in a telescope
of 123 feet, and at the same distance of Jupiter from the earth was found
4" 42”. The greatest elongations of the other satellites, at the same distance
of Jupiter from the earth, are found from the periodic times to be 256" 4777,
and 1’517 6.

oy R LR

The diameter of Jupiter taken with the micrometer in a 123-foot tele-
' scope’ several times, and reduced to Jupiter'’s mean distance from the carth,
proved always less than 40, never less than 38", generally 3¢”. This diam-
eter in shorter telescopes is 40”, or 41”; for Jupiter’s light is a little dilated
by the unequal refrangibility of the rays, and this dilatation bears a less ratio
to the diameter of Jupiter in the longer and more perfect telescopes than in _
those which are shorter and less perfect. The times in which two satellites, . &
the first and the third, passed over Jupiter’s body, were observed, from the
beginning of the ingress to the beginning of the egress, and from the corn-
plete ingress to the complete egress, with the long telescope. And from the
transit of the first satellite, the diameter of Jupiter at its mean distance
from the earth came forth 377", and from the transit of the third 258E",
There was observed also the time in which the shadow of the first satellite
passed over Jupiter’s body, and thence the diameter of Jupiter at its mean
distance from the earth came out about 37”. Let us suppose its diameter to
be 37%4”, very nearly, and then the greatest clongations of the first, second,
third, and fourth satellite will be respectively equal to 5.965, 9.494, 15.141,
and 26.63 semidiameters of Jupiter.

PHENOMENON I1

That the circumsaturnal planets, by radii drawn to Saturn’s centre, describe
areas proportional to the times of descri ption; and that their periodic times,
the fixed stars being at rest, are as the Ysth power of their distances from its

cemtre. [ e Fadwiby

For, as Cassini from his own observations hath determined, their distances
from Saturn’s centre and their periodic times are as follows:

[* Appendix, Note 39.]




AN HISTORICAL
AND EXPLANATORY APPENDIX

BY
FLORIAN CAJORI

1. * Frontispiece. Portrait of Newton. The photogravure has been made from
a portrait of Newton, which has been gummed in volume 2 of a large work
entitled Heads in Taille Douce (p. 128). This volume is in the Pepys Library at
Cambridge. The Masters and Fellows of Magdalene College graciously con-
sented to have the portrait photographed for reproduction in the present edition
of Newton’s Principia. J. Edleston® gives an engraving prepared from this same
portrait: but the portrait here shown is a photographic reproduction. The original
drawing is in India ink. As to the year when it was made, Edleston concludes
(p. xix) : “In assigning, therefore, the date of the portrait to the period of a few
years on cither side of 1691, we shall not perhaps be very wide of the truth. If this
supposition be well-founded, this portrait may be considered as the most inter-
esting of all the known portraits of our philosopher, as representing him at a
time of his life the least remote from those memorable eighteen months which it
cost him to produce the great work that has immortalized his name.”

17, Edleston, Correspondence of Sir Isaac Newton and Professor Cotes, Londen, 1850, frontispiece.

2. Facsimile of the title page of the first edition of the Principia. A close approach
to the date when Newton made alterations in this page may be obtained from
the following considerations. Newton’s changes in the title page indicate that he
was president of the Royal Society of London, but they do not indicate that he
had been knighted. In the second edition of the Principia, 1713, his knighthood
appears in the words “Auctore Isaaco Newtono, Equite Aurato.” We know that
Newton was clected president of the Royal Society on Nov. 30, 1703; he was
knighted Jan. 16, 1705. Therefore the alterations on the title page must have been
made in the interval between these two dates. This conclusion is in conformity
with a remark of Flamsteed to Pound,! Nov. 15, 1704, “The book [Newton’s
Opticks] makes no noise in town, as the Principia did, which Thear he s preparing
again for the press with necessary corrections.” The alterations were not printed. -

1 Edleston, op. cit., p. XV.

* The numbers refer to corresponding footnotes in the text.
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628 APPENDIX

3 (p. xvil). Preface to the First Edition of the Principia. This Preface in the first
edition has no date and lacks the author’s signature. The signature “Is. Newton”
and the date “Dabam Cantabrigie, e Collegio S. Trinitatis, Maii 8. 1686” first
appear in the second edition, 1713. The preface to the first edition of Newton’s
Opticks, 1704, bears no date, while in the second edition, 1718, the date “April 1,
1704” is added. Probably Newton came to recognize the importance of dates in
the course of his bitter controversy with Leibniz on the invention of the calculus.

4 (p. xix). Alterations and corrections made in preparing the second edition of
the Principia. The statement of changes indicated in Newton’s short Preface
may be supplemented by the following remarks of Ball:* “I possess in manuscript
a list of the additions and variations made in the second edition; the changes are
very numerous, in fact I find that of the 494 (i.e., 510-16) pages in the first edition
397 are more or less modified in the second edition. The most important altera-
tions are the new preface by Cotes; the propositions on the resistance of fluids,
book 11. sectiort vir. props. 34-40; the lunar theory in book 1r.; the proposition
on the precession of the equinoxes, book 1. prop. 39; and the propositions on the
theory of comets, book 11. props. 41, 42.”

In preparing copy for the second edition of the Principia, Cotes took great care
to remove errors and imperfections. Newton wrote to him on Oct. 11, 1709: “I
would not have you be at the trouble of examining all the Demonstrations in the
Principia. Its impossible to print the book wth out some faults and if you print
by the copy sent you, correcting only such faults as occur in reading over the
sheets to correct them as they are printed off, you will have labour more then it’s
fit to give you.”” In 1713, after the second edition had appeared from the press,
Newton sent Cotes a list of errata, perhaps intending it to be printed as a table of
errata. To this Cotes replied, Dec. 22, 1713:* “I observe You have put down about
20 Errata besides those in my Table....I believe You will not be surpriz’d if I
tell You I can send You 20 more as considerable, which I have casually observ’d,
and which seem to have escap’d You: and I am far from thinking these forty are
all that may be, found out, notwithstanding that I think the Edition to be very
correct. [ am sure it is much more so than the former, which was carefully enough
printed; for besides Your own corrections and those I acquainted You with whilst
the Book was printing, I may venture to say I made some Hundreds, with which
I never acquainted You.”

Certain changes occurring in the second edition of the Principia are mentioned
in Notes 3, 19, 24, 26, 27, 29, 30, 39, 42, 45. ‘

1W. W. R. Ball, dn Essay on Newton’s Principia, London, 1893, p. 74.
2 Edleston, op. cit., p. 5.
% Edleston, op. cit., pp. 167, 168.
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APPENDIX 629

5 (p. xx). Cotes’s Preface to the Second Edition of the Principia. It was at the
suggestion of Richard Bentley, Master of Trinity College in Cambridge, that
Cotes wrote this Preface. “I have St Isaac’s Leave,” wrote Bentley, “to remind you
of what You and I were talking of, An alphabetical Index, and a Preface in your
own Name; If you please to draw them up ready for ye press, to be printed after
my Return to Cambridg, You will oblige Yours R Bentley.™

Cotes wrote to Newton on Feb. 18, 1712-3, about the Preface: “I think it will
be proper besides the account of the Book and its improvements, to add some-
thing more particularly concerning the manner of Philosophizing made use of
and wherein it differs from that of Descartes and Others, I mean in first demon-
strating the Principle it employs. This I would not only assert but make evident
by a short deduction of the Principle of Gravity from the Phacnomena of Nature
in a popular way that it may be understood by ordinary readers and may serve
at ye same time as a specimen to them of the Method of ye whole Book.”” Then
follows a detailed plan which was afterwards somewhat modified. Newton him-
self prepared a short Preface which made it unnecessary for Cotes to enter into
a recital of the “improvements” in the second edition of the Principia. Cotes’s
Preface is therefore confined to “the manner of philosophizing” and an examina-
tion of the objections of Leibniz (without mentioning his name) and of the sys-
tem of vortices. Leibniz, in a letter (April 9, 1716) written under excitement, calls
the Preface “pleine d'aigreur.”

As stated, the primary object of the Preface was to combat Descartes’ theory of
vortices. The need of such discussion, twenty-six years after the first appearance
of Newton's Principia, indicates the great popular attachment to the views of
Descartes. Not only was his theory of vortices generally held at this time (1713)
on the European continent, but also in England. Cartesian cosmology invaded
England soon after Descartes’ publication of his theory in 1644. Henry More, of
Christ’s College, Cambridge, one of the first fellows of the Royal Society of
London, in his earlier years had been in correspondence with Descartes and an
admirer of his. More’s friend, Joseph Glanvill, of Exeter College, Oxford, also
a fellow of the Royal Society, wrote appreciatively of Descartes” vortices. The
writings of Robert Boyle teem with references to Descartes, “the most acute mod-
ern philosopher,” yet in Boyle there is only one reference that I could find, to
the Cartesian theory of vortices, and that reference was “without allowing this
hypothesis to be more than not very improbable.”® Robert Hooke wrote in eriti-
cism of some aspects of the vortex theory.*

Descartes’ theory of vortices received a popular exposition in the farmous text-
book on physics, written in French by Rohault. A Swiss physician, Théophile
Boner,; made a Latin translation of this text, which appeared in Geneva in 1674
aud in London in 1682. Thus England began to use this well written textbook
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five years before the publication of Newton’s Principia. The profound divergence
of the mechanics of Rohault and Newton stands out glaringly in Rohault’s state-
ment that motion in a circle is as natural as in a straight line. The Cartesian doc-
trine had elements of popular strength. The non-mathematician could under-
stand it. Everyone had seen chips of wood whirled about in eddies of rivers.
Everyone had seen a minute whirlwind raise the dust in tiny cyclones. Planets
moved like pieces of wood in eddies. These mental pictures carried conviction.
On the contrary, Newton’s law of inverse squares in gravitational attraction
meant nothing to one not accustomed to mathematical thinking.® British mathe-
maticians like Halley, David and James Gregory, Keill, Whiston, Cotes, Taylor,
Robert Smith, and Saunderson favored Newton’s doctrines. Newton himself lec-
tured at Cambridge, certainly as late as 1687,° but the details relating to his activ-
ity as a lecturer are exceedingly meager. After 1692 he had a long illness. In 1656
he was appointed Warden of the Mint. He was succeeded in the Lucasian Chair
at Cambridge about 1701 by Whiston, who lectured on Newtonian philosophy.
From these facts alone one might infer that Newton’s system easily displaced
Cartesianism in British universities. But such was not the fact; the Cartesian sys-
tem displayed wonderful vitality, even in Cambridge. For about forty years after
the first publication of Newton's Principia the French system maintained a foot-
hold in England. I offer a few facts in support of this statement. The essayist,
Joseph Addison, of Magdalen College, Oxford, delivered an oration in 1693, six
years after the publication of Newton’s Principia, in which he praises Descartes,
“who had bravely asserted the truth” against the followers of Aristotle.” Whiston®
refers to David Gregory’s teaching Newton at Edinburgh, “while we at Cam-
bridge, poor wretches, were ignominiously studying the fictitious hypotheses of
the Cartesian.” I have already referred to the publication in England in 1682 of
Rohault’s physics, containing a popular exposition of Descartes’ system. Fifteen
years later, in 1697, a new translation of that book into Latin appeared from the
pen of Samuel Clarke, of Caius College, Cambridge, whom Whewell describes as
a “friend and disciple of Newton.” While the translation was in progress, Whis-
tor spoke his mind to Clarke on the fitness of such a translation in the follow-
ing terms:” “Since the youth of the university must have, at present, some System
of Natural Philosophy for their studies and exercises; and since the true system
of Sir Isaac Newton's was not yet made easy enough for the purpose, it is not
improper, for their sakes, yet to translate and use the system of Rohault ... but
that as soon as Sir Isaac Newton’s Philosophy came to be better known, that only
ought to be taught, and the other dropped.” It should be added that Rohault’s was
reputed to be by far the best treatise of that time on physics in general. Clarke’s
translation, in better Latinity, played an important réle as a textbook, in both
English and American colleges. John Playfair'® says that this new and elegant
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translation contained additional notes, in which Clarke explained the views of
Newton, so that the notes contained virtually a refutation of the text, avoiding,
however, all appearance of controversy. Thus, continues Playfair, “the Newton-
ian Philosophy first entered the University of Cambridge, under the protection
of the Cartesian.” Playfair’s statement needs emendation in one respect. Clarke’s
edition of Rohault, as printed in 16g7, did not contain the additions as footnotes,
but as annotations at the end of the volume; they are shorter than in the later
editions and refer to ancient writers, and do not refute Descartes’ theory of vor-
tices. Clarke’s refutation came at a later date. Four editions of Clarke’s Latin
translation appeared. The third, issued in 1710, differs from the first in having
the notes not at the end of the volume, but at the bottom of the pages as footnotes,
and greatly enlarged. This third edition (perhaps also the second of 1703, which
I have not seen) contains a new annotation which relates to Descartes’ vortices
and points out conclusively that these vortices do not explain the facts of obser-
vation. They do not explain the motion of comets which cut the orbital planes of
the planets at all angles; they would make a planet move fastest when farthest
from the sun, while as a matter of fact it moves slowest when in that position. On
this subject, there is given a long quotation from Newton’s Principia. The popu-
larity of Clarke’s later editions of Rohault may be due largely to the footnotes.
Taken as a whole, the text was acceptable to followers of Newton as well as to
those of Descartes. Both sides were fairly presented. Professor Playfair directs
attention to the fact that tutors in colleges, whose instructions “constitute the real
and efficient system” in a British university, sometimes held different views from
those of the professors. Thus Professor Keill introduced in his lectures New-
tonian philosophy at Oxford, but the Oxford tutors “were not cast in that mold
till long afterwards.” Ball states that “at Cambridge until recently professors only
rarely put themselves into contact with or adapted their lectures for the bulk of
the students. ... Accordingly if we desire to find to whom the spread of a gen-
eral study of the Newtonian philosophy was immediately due, we must look not
to Newton’s lectures or writings, but among proctors, moderators, or college
tutors who had accepted his doctrines.”** Clarke’s edition of Rohault suited there-
fore the needs of tutors, whichever of the two opposing scientific views they
favored. That in 1723 Rohault’s text was by no means discredited in England is
evident from the appearance of an English translation of Clarke’s edition, with
notes. Other editions of this translation appeared as late as 1729 and 1735. Accord-
ing to Hodlay’s life of Samuel Clarke, Rohault was still the Cambridge textbook
in 1730, three years after the death of Newton and forty-three years after the ap-
pearance of Newton’s Principia. It looks as if two different practices of instruc-
tion had been carried on for many years without open controversy between the
two factions, one favoring Descartes as expounded by Rohault, the other favoring

OF MTvre
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Newton as expounded in Clarke’s footnotes, in Whiston’s lectures published in
1710 and 1716, and in the teaching of Richard Laughton, a noted tutor at Clare
Hall in Cambridge. Desaguliers,** who moved from Oxford to London in 1713,
informs us that “he found the Newtonian philosophy generally received among
persons of all ranks and professions, and even among the ladies by the help of
experiments.” Somewhat at variance with this statement is that of Voltaire,*
who visited England in 1727 and declared that though Newton survived the pub-
lication of the Principia more than forty years, yet at the time of his death he had
not above twenty followers in England. But Voltaire™ said also: “A Frenchman
who arrives in London finds a great alteration in philosophy, as in other things.
He left the world full, he finds it empty. At Paris you see the universe composed
of vortices of subtle matter, in London we sce nothing of the kind.”

On the European continent, the vortices of Descartes enjoyed a longer life.
Attempts were made by Huygens, Perrault, Johann II Bernoulli, and others to
remove some of the glaring defects in the original theory of vortices, but by the
middle of the eighteenth century the Newtonian system had gained complete
ascendancy. ‘

Cotes’s Preface is of historical importance in other respects. It is interpreted as
advocating the theory of “action at a distance” (see Note 8), and the theory that
gravity is an innate property of matter (sce Note 6).

1 Edleston, op. cit., p. 148.

2 Edleston, op. cit., pp. 151, 154-

3 Works of the Honourable Robert Boyle, vol. 5, London, 1772, p. 403.

4 Robert Hooke, Micrographia, London, 1665, pp. 6o, 61.

5 On the difficulty of understanding the Principia, sce Ball, op. ¢it., pp. 114-116.

8 Edleston, op. cit., p. xcviil.

7. Brewster's Memoirs of Sir Isaac Newton, vol. 1, ed. 2, Edinburgh, 1860, pp. 291, 292.

8 Whiston's Memoirs of His Qwn Life, p. 36, quoted by Brewster, op. cit.,, vol. 1, p. 291.

9 Brewster, op. ¢it., vol. 1, p. 295.

10 [, Playfair, “Dissertation Fourth,” in Encyclopaedia Britannica, ed. 8, vol. 1, pp- 609, 610; quoted
by Brewster, op. cit., vol. 1, pp. 290, 291.

11W, W, R. Ball, History of the Study of Mathematics at Cambridge, Cambridge, 1889, p. 74.

12|, T. Desaguliers, Physico-Mechanical Lectures, London, 1717; quoted by W. Whewell, History
of the Inductive Sciences, vol. 1, ed. 3, New York, 1875, p. 426.

13 F, M. A. Voltaire, quoted by Brewster, op. cit., vol. 1, p. 290.

14 Voltaire, Eléments de la philosophie de Newton, 1783; Eunvres, vol. 31, 1785, quoted by Whewell,
op. cit., vol. 1, 1875, p. 431. .

6 (p. xxi). Cotes’s Preface. The nature of gravity. Cotes’s words may have con-
tributed to a misunderstanding of the views of Newton. Cotes says “that the
attribute of gravity was found in all bodies” and that “gravity must have a place
among the primary qualities of all bodies”; he refers to “the nature of gravity in
carthly bodies.” In expressions of this sort it might seem implied that gravity is
an inherent property of matter. Phrases in Newton’s Principia (1637) appear to
rarry a similar implication. Newton says (Book 1, Prop. 1x): “If two bodies
... attracting each other with forces inversely proportional to the square of

:
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their distance”; (Book 1, Prop. Lxix) “the absolute forces of the attracting bodies™;
(Book 1, Prop. xxir) “the attraction of one corpuscle towards the several particles
of one sphere”; (Book 1, Prop. Lxxv) “the attraction of every particle is inversely as
the square of its distance from the centre of the attracting sphere”; (Book 1, Prop.
rxxvit) “let now the corpuscle P attract the sphere”; (Book 1, Prop. v) “Jupiter
and Saturn . .. by their mutual attractions sensibly disturb each other’s motions.”
In these expressions, the “bodies” or the “corpuscles” are represented as active, as
“attracting.” They are not passive like a chip of wood carried about by an eddy
in a pool, or like a planet passively swept through space by a Cartesian vortex. It
was easy, therefore, to jump to the inference that in the Newtonian theory, grav-
ity was an innate, inherent property of matter. Indeed, such an interpretation was
made by writers on the European continent, for example by Huygens, Lalande,
Bordas-Demoulin and others,* and has been generally held by astronomers and
physicists. Thus, after the publication of the Principsa in 1687, Huygens forthwith
abandoned the explanation of planetary motion by Descartes” theory of vortices,
and published his adherence to Newton’s celestial mechanics. But Huygens did
not accept the view that gravitation was an innate property of matter, a view
which he attributed to Newtonian philosophy. On this point Huygens rejected
what he interpreted to be the tenet of Newton, and continued his adhesion to the
tenet of Descartes.?

While readers of the first edition of the Principia had some justification in
attributing to Newton the view that gravity was an innate property of matter,
they were nevertheless mistaken. In the first edition Newton had made no explicit
declaration on this point. We know now that before publishing his great book, as
early as Feb. 28, 1678-9, in a letter to Robert Boyle,” he speculated on the “cause of
gravity” and endeavored to explain attraction by the action of an “aether,” con-
sisting of “parts differing from one another in subtility by indefinite degrees.”
(See Note 55.) It is evident that Newton was no more a believer in gravity as an
innate property of bodies than was Descartes. But readers of the first edition of
the Principia had no means of knowing this. His letter to Boyle was not then
made public.

Even Bentley, a great friend and admirer of Newton's, at first entertained the
wrong idea of his attitude; in letters to Bentley of 1692-3, Newton strongly op-
posed the doctrine that gravity was an innate property of matter and also the doc-
trine of “action at a distance.” These letters, like that to Boyle, were not printed
until many years later, and could therefore not immediately influence scientific
opinion generally. In a letter to Bentley,* Newton wrote:

“You some times speak of gravity as essential and inherent to matter. Pray, do
not ascribe that notion to me; for the cause of gravity is what I do not pretend to
know, and therefore would take more time to consider of it.”
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In another letter Newton wrote:

“It is inconceivable, that inanimate brute matter, should, without the medi-
ation of something else, which is not material, operate upon and affect other mat-
ter without mutual contact, as it must be, if gravitation, in the sense of Epicurus,
be essential and inherent in it. And this is one reason why I desired you would
not ascribe innate gravity to me. That gravity should be innate, inherent, and
essential to matter, so that one body may act upon another at a distance through
a vacuum, without the mediation of any thing else, by and through which their
action and force may be conveyed from one to another, is to me so great an ab-
surdity, that I believe no man, who has in philosophical matters a competent
faculty of thinking, can ever fall into it. Gravity must be caused by an agent act-
ing constantly according to certain laws; but whether this agent be material or
immaterial, I have left to the consideration of my readers.”

In the second edition of the Principia (1713) Newton made his position clearer
by three additions to the text of 1687. In the Scholium following Prop. Lxix of
Book 1, Newton says: “I here use the word attraction in general for any endeavor
whatever, made by bodies to approach each other, whether that endeavor arise
from the action of the bodies themselves, as tending to each other or agitating
each other by spirits emitted; or whether it arises from the action of the ether or
of the air, or of any medium whatever, whether corporeal or incorporeal, in any
manner impelling bodies placed therein towards each other.” Here he maintains
an agnostic attitude. In Book 11, when discussing the Rules of Reasoning in Phi-
losophy, he adds: “All bodies whatsoever are endowed with a principle of mutual
gravitation. .. . Not that ] affirm gravity to be essential to bodies: by their vis insiza
I mean nothing but their inertia.” Finally, in the General Scholium at the end of

the Principia, he said, “I do not frame hypotheses” on the nature of gravity. This -

was the proper attitude for him to take in a work like the Principia. To Boyle he
described his notions on this subject to be “so indigested” that he was “not well
satisfied” with them.

More positive than in the Principia was Newton's statement in the “Advertise-
ment” to the second edition of his Opricks, July 16, 1717: “And to shew that I do
not take Gravity for an Essential Property of Bodies, I have added one Question
[Query 31] concerning its Cause. chusing to propose it by way of a Question, be-
cause I am not yet satisfied about it for want of Experiments.”

Not only is it a mistake to attribute the doctrine that gravity is an innate quality
of bodies to Newton, but it seems to be also a mistake to attribute it to Cotes, not-
withstanding some of the phrases that I have quoted from his Preface. That it is
a mistake appears from the correspondence between Cotes and Samuel Clarke.
Cotes submitted to Clarke his draft of the Preface to the second edition of the
Principia. He writes to Clarke? “I return You my thanks for Your corrections
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of the Preface, and particularly for Your advice in relation to that place where I
seer’d to assert Gravity to be Essential to Bodies. I'am fully of Your mind that
it would have furnish’d matter for Cavilling, and therefore 1 struck it out im-
mediately upon Dr Cannon’s mentioning Your Objection to me, and so it never
was printed. ... My design in that passage was not to assert Gravity to be essential
to Matter, but rather to assert that we are ignorant of the Essential propertys of
Matter and that in respect to our Knowledge Gravity might possibly lay as fair a
claim to that Title as the other Propertys which I mention’d. For I understand by
Essential propertys such propertys without which no others belonging to the
same substance can exist: and I would not undertake to prove that it were impos-
sible for any of the other Properties of Bodies to exist without even Extension.”

The question of the nature of gravity has aroused new interest with the advent
of Einstein’s general theory of relativity, according to which gravity is looked
upon not as innate to bodies, but rather as some modification of space. According
to Einstein, the earth produces in its surroundings 2 gravitational field, which,
acting on the apple, brings about its motion of fall. In Einstein’s gravitational
field,® in general, a ray of light is propagated curvilinearly. The difference be-
tween the new and the old physics is stated by Eddington thus: “Einstein’s law
of gravitation controls a geometrical quantity curvature in contrast to Newton’s
law which controls a mechanical quantity force.”

1 Edleston, op. ¢it., p. 159.

2 Tyaité de la lumiére, par C. H. D. Z., Leyden, 1690, pp. 125-180; Discours de la cause de ln pesan-
tenr. As early as 1669 Huygens read before the Paris academy a speculation on the cause of gravity
based on a modification of Cartesian vortices. He did not publish on this subject before 1690. When
Newton's Principia appeared in 1687, Huygens at once accepted Newton's centripetal force varying
inversely as the square of the distance, beciuse motions in the solar system were explained with great
success by this law. But Huygens rejected Newron's idea that particles of matter of all bodies attract
each other, because he could not see how such atrraction could be explained on any mechanical prin-
ciple. Edleston (op. cit., pp. xxxi, lix) makes the interesting statement that the only time Newton and
Huygens met, in 1689, ata meeting of the Royal Society of London, Huygens talked on the cause of
gravity, while Newton discussed double refraction in Island crystals—each of the two great physicists
discoursing on the topic most intimately associated with the other. For details, see also F. Rosenberger,
Icaae Newton und seine physikalischen Principien, Leipzig, 1895, pp. 234-248.

3 Jsqaci Newtoni Opera (Horsley's ed.), vol. 4, 1782, pp- 385-394.

4 WWorks of Rickard Bentley, vol. 3, London, 1838, pp. 210, 211. Letter of Newton to Bentley, “Trin-
ity College, Jan. 17, 1692-3.”

5 Edleston, op. ¢if., pp. 150, 150.

6 A. Finstein, Relativity, the Special and General Theory, tr. B. W, Lawson, New York, 1021, pp.

§8.

73,"' A. §. Eddington, The Nature of the Physical World, New York, 1929, p. 133.

7 (p. xxx). Cotes’s Preface. Cotes's term for the earth’s orbit is ordis magnus
(the great orbit). It is a term frequently used also by Newton to designate the
earth's orbit in its annual revolution around the sun. The term was introduced
by Copernicus (De revolutionibus orbium caelestium, Lib. 1, Cap. x) and was
used by Rhaeticus, Kepler, and others. The path of the earth was called the “great
orbit,” not, of course, because of its dimension, for the orbits of the superior plan-
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ets are greater, but because of its great importance to the practical astronomer,
who must take cognizance of it, in explaining the apparent motions of the sun
and planets. In all parts of the Principia and the System of the World where the
term orbis magnus occurs, I have substituted for it the expression “earth’s orbit.”
I may add that Newton himself uses the name “earth’s orbit” in his Opticks,
Book 11, Part 111, Prop. x1.

8 (p. xxxi). Cotes’s Preface. Action at a distance. The doctrine of “action at a
distance” in gravitational attraction has been wrongly ascribed to Newton; it is
more properly due to Cotes, who, in his Preface to the Second Edition of the Prin-
cipia, argues against Descartes’ theory of vortices. Cotes does not use the phrase
“action at a distance,” nor does he explicitly advocate the view that celestial spaces
are void. He does argue that if a celestial fluid exists it “has no inertia, because it
has no resisting force.” The implicating sentences of his Preface read as follows:
“Those who would have the heavens filled with a fluid matter, but suppose it
void of any inertia, do indeed in words deny a vacuum, but allow it in fact. For
since a fluid matter of that kind can not be distinguished from empty space, the
dispute is now about names and not the nature of things.” Samuel Clarke is more
definite. In one of the footnotes to his later editions of Rohault he refers explicitly
to “that immense Space which is void of all matter.”

In Note 6 supra I quoted from Newton’s letters to Bentley passages relating to
gravity, where he says: “That one body may act upon another at a distance through
a vacuum, without the mediation of any thing else, by and through which their
action and force may be conveyed from one to another, is to me so great an absurd-
ity, that I believe no man, who has in philosophical matters a competent faculty
of thinking, can ever fall into it.”

Maxwell* says: “We find in his ‘Optical Queries’ and in his letters to Boyle,
that Newton had very early made the attempt to account for graviration by means
of the pressure of a medium, and that the reason he did not publish these investi-
gations ‘proceeded from hence only, that he found he was not able, from experi-
ment and observation, to give a satisfactory account of this medium, and the
manner of its operation in producing the chief phenomena of Nature. .. .*

“And when the Newtonian philosophy gained ground in Europe, it was the
opinion of Cotes rather than that of Newton that became most prevalent, till at
last Boscovich propounded his theory, that matter is a congeries of mathematical
points, each endowed with the power of attracting or repelling the others accord-
ing to fixed laws. In his world, matter is unextended, and contact is impossible.
He did not forget, however, to endow his mathematical points with inertia.”

Although the phrase “action at a distance” appears very simple, it is subtle
on closer inspection and some physicists have pointed out “how weak are the
grounds on which we deny principal action at a distance.”®
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An important event in the history of the doctrine “action at a distance” was the
appearance of Maxwell’s electromagnetic theory of light, in which it was held
that electromagnetic disturbances travel with finite velocities. Previously, elec-
tric and magnetic attraction and repulsion had been assumed to take place instan-
taneously.

The element of time has come to be considered also in gravitation. The phrase
“action at a distance,” instead of being used in the old sense with reference to the
nonexistence of a medium intervening between attracting masses, is employed
since the advent of the theory of relativity to indicate an instantaneous action at
a distance.* In place of an agent we now consider the time of action. But even
now the view of Newton is misrepresented. Newtonian action at a distance is
spoken of as “immediate action.” Newton, on the other hand, postulates an agent
and gives it time to act. To be sure, in his calculations of gravitational attractions,
he assumes, as a necessary approximation (having no experimental data on the
speed of propagation of gravitational action), that the action is instantaneous,
but not so in his talks on gravity. In a letter to Boyle® he considers the cause of
gravitation between two approaching bodies. They “make the ether between them
begin torarefy”; and again,” in his hypotheses on light, he says, “So may the gravi-
tating attraction of the earth be caused by the continual condensation of some
other such like ethereal spirit . . . in such a way . . . as to cause it [this spirit]
from above to descend with great celerity for a supply; in which descent it may
bear down with it the bodies it pervades, with force proportional to the super-
ficies of all their parts it acts upon.”

17, C. Maxwell, Proceedings of the Royal Institution of Great Brituin, vol. 7, 1873-1875, London,
PP. 48, 49-

2 (. Maclaurin's Account of Sir Isaac Newton's Philosephical Discoveries, London, 1748.

3 A Schuster, The Progress of Physics, 1875-1908, Cambridge, 1911, p. 37.

471t ;s of interest that, in one place, Laplace made the assumption that the transmission of gravity
is not instantaneous, and he found that in order to produce the known effects in the secular accelera-
tion of the moon, gravity must travel seven mitlion times faster than light. The moon, with its subtle
orbital inequalities, has ia this problem, as in others, displayed a treacherous behavior. Laplace’s calcu-
lation has been found to be incomplete and his velocity of gravity to be illusory. (See Laplace,
Mécanigue céleste, Livre X, the close of Chap. viL.)

5 [saaci Newtont Opera, op. ¢it., vol. 4, p. 385. )

8 S. P, Rigaud, Historical Essay on the First Publication of Newton's Principia, Oxford, 1838, Ap-
pendix, pp. 69, 70-

3

i

1

i
i
i
i

9 (p.xxxv). The alterations and additions made in the third edition of the Prin-
cipia are indicated in Newton's Preface to that edition only in a general way. A
detailed list was prepared by the astronomer J. C. Adams, of Pembroke College,
Cambridge, and printed in David Brewster’s Memoirs .. .of Sir Isaac Newton
(ed. 2), vol. 2, Edinburgh, 1860, Appendix No. XXX, pp. 414-419.

Ceruin changes occurring in the third edition of the Principia are mentioned
in Notes 11, 19, 26, 20, 33, 39, 42.
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10 (p. 1). Translations of the Principia made by Motte and Thorp. In revising
Motte’s translation of Cotes’s Preface and of the Principia of Newton, use has
been made of Robert Thorp’s translation into English (ed. 2, London, 1802) of
Cotes’s Preface and the first book of the Principia. Occasional aid has been derived
also from J. Ph. Wolfers’ translation of the Principia into German, 1872. The geo-
metrical figures of the Principia are taken from the third edition (1726).

Andrew Motte’s translation of the Principia, from Latin into English, was
made in 1729, from the third edition (1726).

11 (p. 1). Definition 1 of the Principia, Quantity of matter, or mass. Newton
does not define density. His definition of mass, as the product of density and vol-
ume, has been variously appraised. Mach® says: “As regards the concept of mass,
we remark first that Newton’s formulation which defines mass as the quantity
of matter of a body, determined by the product of volume and density, is unfor-
tunate. Since we can define density only as the mass of unit volume, the circle is
obvious.” But it is not easy to believe that Newton was guilty of an argumentum
in circulo so manifest. Crew® holds that “in the time of Newton, density and spe-
cific gravity were employed as synonymous, and the density of water was taken

arbitrarily to be unity. The three fundamental units employed ... were there-
men s ere-.

fore density, length, time, instead of our mass, length, time. On such a system,
it Ts both natural and togically permissible to define mass in terms of density.”

Newton gives a definition of equal densities of bodies in a later passage in the
Principia (Book 111, Prop. v1, Cor. 1v), where he says: “If all the solid particles of
all bodies are of the same density, and cannot be rarified without pores, then a
void, space, or vacuum must be granted. By bodies of the same density, I mean
those, whose inertias are in the proportion of their bulks.” It is to be observed, also,
that in this passage Newton does not say that the small solid particles, which he
assumes to be of the same density, are all of the same size. If all were assumed
to be of the same size, then the densities of bodies would be proportional to the
numbers of such small particles in equal volumes. Hoppe attributes this latter con-
cept of density to Newton, and claims that it is found earlier in the writings of
Frangois Lubin, John Kepler, Pierre Gassendi and Robert Boyle.?

But Newton’s corpuscular idea, as described in his Opticks, goes against
Hoppe's interpretation of Newton. In his Opricks (third edition, 1721, pp. 375~
376), he says: “It seems probable to me, that God in the beginning formed matter
in solid, massy, hard, impenetrable, moveable particles, of such sizes and figures,
and with such other properties and in such proportion to space, as most conduced
to the end for which He formed them; and that these primitive particles, being
solids, are incomparably harder than any porous bodies compounded of them;
even so very hard, as never to wear or break in pieces: no ordinary power being
able to divide what God himself made one in the first creation.”
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In the use of the concept of mass, as distinguished from weight, Newton has
forerunners who perceived the difference between mass and weight more or less
clearly. Crew finds the earliest quantitative conception of this idea in Huygens’
discussion of centripetal force, in 1673, which was fully discussed in his post-
humous De vi centrifitga, 1703. Huygens states that when particles move with
equal speeds along equal circles, the centripetal forces are to each other as “the
weights of the particles” or as their “solid quantities”—sicuz mobilium gravitates
seu quantitas solidas. Here the “solid quantity” indicates mass. Hoppe claims the
concept of mass for Kepler, who designates it by the word moles as in the follow-
ing quotation from Kepler's Astronomia nova (1609): “If two stones were re-
moved to any part of the world, near each other but outside the field of force of a
third related body, then the two stones, like two magnetic bodies, would come
together at some intermediate place, cach approaching the other through a dis-
tance proportional to the mass [moles] of the other.”*

L E. Mach, Die Meckanik in ihrer Entwicklung (ed. 8}, Leipzig, 1921, chap. 2, § 3, p. 188,

2 H. Crew, The Rise of Modern Physies, Baltimore, 1928, p. 124.

3 E. Hoppe, Archiv fiir Geschichte der Mathematik, der Naturwissenschafien und der Technik, n.s.,
vol. 11, 1929, pp. 354—361. For further statements of Newton on the constitution of matter, consult
Sir Isaae Newton, 1727-1927, A Bicentenary Evaluation of His Work, Baltimore, 1928, pp. 224, 225.

41, Kepler, Introduction to Astronomia nova, 1609, Opera omnig (ed. Ch. Frisch), vol. 3, p. 1513
Kepler's Nete Astronomie, libersetzt von Max Caspar, Miinchen-Berlin, 1929, p- 26.

12 (p. 1). Book 1, Definition 11.(Quantity of motion, as the expression is used
in the Principia, is equivalent to the term\momenium in more modern mechan-

ics, and is measured by the product of mass and velocity.

13 (p. 6). Scholium following Definition vir. Absolute motion and absolute
time. Newton pointed out that “the parts of that immovable space, in which
those [absolute] motions are performed, do by no means come under the obser-
vation of our senses” But he adds, “yet the thing is not altogether desperate;
‘Emumcnts to guide us, partly from the apparent motions, which
are the differences of the true motions; partly from the forces, which are the
causes and effects of the true motions, etc.” In the light of more recent thought
the question arises, in connection with rectilinear motion, whether the existence
of “apparent” or relative motion, as revealed to our senses, necessarily carries with
it the existence of absolute motion, as vaguely suggested by Newton. Or is it not
possible that relative motion is the only rectilinear motion that exists? Take auto- it
mobiles A, B, and C. Suppose B gains on A with a velocity of 10 kilometers per L
hour, while C, traveling along the same straight road, in the same direction, gains
on A with a velocity of 15 kilometers per hour. From the relative velocity of 5
kilometers per hour, which is the difference of the velocities 15 and 10, we cannot
ascertain the velocity of A; A may be at rest on the road, or moving. Of import-
ance in this argument is the circumstance that, from the velocity of A, or from
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its state of rest on the road, the inference cannot be drawn by syllogism that such
velocity or rest is absolute. “Absolute motion,” says Newton, “is the translation
of a body from one absolute place into another,” and “absolute rest is the continu-
ance of the body in the same part of...immovable space.” The existence of
absolute motion or rest cannot be established merely from the existence of rela-
tive motion or rest. In our illustration of automobile motion, we know that the
road itself is in motion, being carried by the earth in its orbit, and so on. Thus, we
are forced back to Newton’s own admission, that there is no way of bringing
absolute motion or absolute space under the observation of the senses. Newton
does not mention a universal ether in his discussion of absolute motion;, but he
might have argued, as has been done since, that motion through such an ether
constitutes absolute motion. Here two remarks come to mind: the existence of
such an hypothetical ether has been denied in the eighteenth and twentieth cen-
turies; the motion through this ether cannot be said to proceed “under the obser-
vation of the senses.”

More convincing is Newton’s remark on absolute rotation. Two globes are
kept by a cord at a given distance apart and are revolved about their common cen-
tre of gravity. From the tension of the cord the angular velocity may be deter-
mined. Here we have a rotation, resulting from a dynamical experiment more
or less familiar through sense-perception, which makes no reference to terrestial,
solar, or stellar positions, and seems therefore absolute. It is absolute in somewhat
the same sense as Foucault’s pendulum may be said to establish the earth’s abso-
lute rotation. If this view is correct, then Newtonian dynamics dealt with a
rotation which was truly absolute, nevertheless empirical. Does it not follow,
one is tempted to ask, that the space in which absolute rotation takes place must
itself be absolute? Newton does not draw such an inference, but commentators
have declared that the abscluteness of rotation and acceleration compelled New-
ton to recognize that space could not be relative; for, otherwise, space would
have a dual structure, relative for rectilinear motion, absolute for rotation.

Remarks similar to those which I applied to absolute rectilinear motion bear
on the discussion of absolute time. It would seem to follow, therefore, that the
existence of absolute rectilinear motion and of absolute time are postulates made
in Newtonian mechanics; they are not based on experimental evidence and may
therefore be said to be metaphysical. There appears to be no @ priors argument
against acceptance as a foundation in mechanics of concepts, some of which are
observable and others unobservable or metaphysical. The two types of concepts
might form a perfectly solid and coherent structure which yields results in accord
with observational data, to a degree of accuracy lying within the probability of
experimental error. Indeed, Newton’s assumptions satisfied this test in the scien-
tific developments extending over a period of two hundred years. During that
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time, astronomy and physics made tremendous strides forward. Celestial mechan-
ics flourished; so did engineering and physical science.

On esthetic grounds or on grounds of mistrust of metaphysics, it might be said
that an empirical science should be based only on observable phenomena. Re-
ligious fears caused Bishop Berkeley, in his Principles of Human Knowledge
(1710) and in his Analyst (1734), to object to absolute space. More recently the
desirabilicy of a purely empirical foundation was stressed by Ernst Mach in his
Die Mechanik.* '

In the nineteenth century the researches of Faraday and Maxwell on electro-
magnetism led to experimental results which could only be explained on the
assumption of the existence of relative motion. A moving magnet gives rise to a
magnetic field and induces an electric current in neighboring conductors which
it passes. This is the fundamental phenomenon in dynamos generating currents.
Can the velocity of the magnet be considered absolute? “Absolute motion,” ac-
cording to Newton, is “translation of a body from one absolute place to another”;
now “place” is absolute when the “space” is absolute, and “absolute space” exists
“n its own nature, without regard to anything external.” Now a magnet, if in
absolute motion, “without regard to anything external” (not even a neighboring
conductor which it passes), could not generate an electric current. If, instead of
a moving magnet, we consider a moving charge of electricity, similar remarks
apply. Plainly, electromagnetic phenomena invoke velacities that are “relative.”
Such considerations did not, however, rule out “absolute velocity” from physical
science, for other phenomena might need the concept of absoluteness, and it was
not yet recognized that all atoms and therefore all matter are really electrical.

A more serious situation arose near the close of the nineteenth century. The
luminiferous ether of Newton, Huygens, and Hooke in the seventeenth century,
which had been discarded by most scientists in the cighteenth century, was rein-
stated in the nincteenth century. The prevailing belief was that this ether was
stagnant, and that the earth could move through it without dragging the ether
along. In the minds of many, this stagnant ether constituted a fundamental
frame of reference in the explanation of absolute motion. But the stagnant ether
was not altogether satisfactory and a few physicists, such as G. G. Stokes, advo-
cated an ether which is dragged as is water by a moving ship. Could this question
be settled by experiment? To answer this question, Michelson and Morley in 1887
performed the now famous experiment” at Cleveland, Ohio, which Michelson is
reported to have called an “unfortunate experiment,” for it did not yield itself to
satisfactory treatment in the old Newtonian mechanics. If the earth did not drag
the ether, there would be an ether wind, the so-called “ether drift.” The result of
the test showed no such “drift,” so that, as interpreted at that time, the earth in
the Cleveland cellar dragged the ether along with it. Such a result had not been
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expected; it scemed to indicate properties of the ether which it was impossible
to reconcile with properties required to explain other known phenomena, such as
Bradley’s aberration of light and the rectilinear path of vertical rays. For nearly
twenty years this experiment was a cloud in the scientific firmament.

Perhaps the nature of the Michelson and Morley experiment may be brought
to mind best by the statement that, just as a man swimming upstream 2 given
distance and back again requires more time than if swimming in still water, so
a ray of light traveling a given distance against an ether wind and back again
requires more time than if the ether had been at rest with respect to the appa-
ratus. It is assumed that the swimmer (ray of light) moves always with the same
velocity relative to the water (ether). But Michelson and Morley’s delicate inter-
ferometer indicated no difference of time: hence the inference that there was no

“ether drift.”

In 1892, G. F. Fitzgerald® of Dublin and H. A. Lorentz* of Leyden, indepen-
dently, made the audacious and seemingly arbitrary assumption that a moving
body contracts along the line of its motion. A yardstick is shorter when moving
in the direction of its length than when it is at rest. On this assumption the Mich-
elson and Morley experiment could be explained, even though the ether was not
moving with the earth. But physicists in general did not derive much content-
ment from this contraction theory. Twelve years passed and then Albert Einstein,
at that time in Zurich, advanced his special relativity theory.® He built this theory
on purely observational foundations, which should explain and codrdinate all
known phenomena of light, particularly the Michelson and Morley experiment.
That trouble-maker, the nineteenth-century luminiferous ether, he cast aside as
being purely hypothetical. He discarded also Newton’s rectilinear absolute mo-
tion as having no observational basis. He felt justified in postulating that the
velocity of light in a vacuum is constant and independent of the motion of its
source. This independence was shown later to exist by Willem de Sitter,® by
observations un double stars. The second assumption of Einstein was the “prin-
ciple of relativity” in the restricted sense: If relative to one codrdinate system, a
second is a uniformly moving codrdinate system devoid of rotation, then natural
phenomena run their course with respect to the second system according to the
same general laws as with respect to the first system. In the dynamics of this
theory, the velocity of light plays a leading réle. A train is traveling on a recti-
linear railroad track. Lightning has struck the rails at two places A and B far
distant from each other. A man on the track, who happened to be at the mid-
point M of the distance AB, perceives the two flashes of lightning at the same
time and calls them simultaneous. Let M’ be the midpoint of the distance AB
on the moving train. Will an observer on the train, placed at M’, find the two
flashes simultaneous? No! For he is traveling on the train toward B, and there-
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fore is moving toward the beam of light coming from B, and away from the
beam coming from A. Hence the observer on the train comes to the conclusion
that the flash B took place before the one at A. Thus, events simultaneous with
reference to the railroad track were not simultancous with reference to the train.
ive. Every reference body or codrdinate system has its own
tatement of the time of an event is not independent of the
y of reference; it is not absolute. But in the Newtonian
¢ was given an absolute significance. Einstein’s special
hematical results in agreement with the Fitzgerald-
Lorentz contraction. This is not strange, for all three physicists aimed to make
provision for the phenomena revealed by the Michelson and Morley experiment.
Lorentz also established equations relating to distances and times of a codrdinate
system C’ (the uniformly moving train), expressed in terms of the cobrdinate
system C (the rectilinear railroad track). These equations, known as the “Lorentz
transformations,”” fit into Einstein’s special theory of relativity. I give below
in parallel columns the valugs «’, ¥, 2, " of an event with respect to the codrdi-
nate system C’ when the values x, ¥, 2, ¢ of the same event with respect to C are
given. C’ moves with respect to C with a uniform velocity #. The velocity of light
in a vacuum is represented by ¢. The axes of the two systems C and C’ are respec-
tively parallel. We assume for simplicity the event localized on the x-axis.
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Comparing the two sets of equations,
more complicated. Relativity affords an example of a theory which has grown
fur more involved in consequence of being founded upon purely empirical data.
The two systems merge into one when codrdinate systems have relative velacities
v that are infinitesimal as compared with the velocity of light. It is this fact that
enabled the Newtonian mechanics to represent planetary motions to a high de-

one sees that the more recent is much
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expected; it seemed to indicate properties of the ether which it was impossible
to reconcile with properties required to explain other known phenomena, such as
Bradley’s aberration of light and the rectilinear path of vertical rays. For nearly
twenty years this experiment was a cloud in the scientific irmament.

Perhaps the nature of the Michelson and Morley experiment may be brought
to mind best by the statement that, just as a man swimming upstream a given
distance and back again requires more time than if swimming in still water, so
a ray of light traveling a given distance against an ether wind and back again
requires more time than if the ether had been at rest with respect to the appa-
ratus. It is assumed that the swimmer (ray of light) moves always with the same
velocity relative to the water (ether). But Michelson and Morley’s delicate inter-

ferometer indicated no difference of time: hence the inference that there was no
“ether drift.”

In 1892, G. F. Fitzgerald® of Dublin and H. A. Lorentz* of Leyden, indepen-
dently, made the audacious and seemingly arbitrary assumption that a moving
body contracts along the line of its motion. A yardstick is shorter when moving
in the direction of its length than when it is at rest. On this assumption the Mich-
elson and Morley experiment could be explained, even though the ether was not
moving with the earth. But physicists in general did not derive much content-
ment from this contraction theory. Twelve years passed and then Albert Einstein,
at that time in Zurich, advanced his special relativity theory.® He built this theory
on purely observational foundations, which should explain and codrdinate all
known phenomena of light, particularly the Michelson and Morley experiment.
That trouble-maker, the nineteenth-century luminiferous ether, he cast aside as
being purely hypothetical. He discarded also Newton's rectilinear absolute mo-
tion as having o observational basis. He felt justified in postulating that the
velocity of light in a vacuum is constant and independent of the motion of its
source. This independence was shown later to exist by Willem de Sitter,® by
observations un double stars. The second assumption of Einstein was the “prin-
ciple of relativity” in the restricted sense: If relative to one codrdinate system, a
second is a uniformly moving codrdinate system devoid of rotation, then natural
phenomena run their course with respect to the second system according to the
same general laws as with respect to the first system. In the dynamics of this
theory, the velocity of light plays a leading réle. A train is traveling on a recti-
linear railroad track. Lightning has struck the rails at two places A and B far
distant from each other. A man on the track, who happened to be at the mid-
point M of the distance AB, perceives the two flashes of lightning at the same
time and calls them simultaneous. Let M” be the midpoint of the distance AB
on the moving train. Will an observer on the train, placed at M’, find the two
flashes simultancous? No! For he is traveling on the train toward B, and there-
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gree of approximation and success. For remarks on Einstein’s general theory of
relativity of 1915, see Note 6 on the Nature of Gravity.

1 Mach, op. cit., pp. 216—-23%.
2 A. A. Michelson and E. W. Morley, in Silliman’s Journal, ser. 3, vol. 34, 1887, p. 333.
3 Scientific Writings of G. F. Fitzgerald, Dublin, 1902, pp. Ix, 562; O. Lodge, Philos. Trans., A, vol.

184, London, 1894, p. 749.
s 1. A. Lorentz, Verlugen d. Zittingen d. K. Akademic van Wetenschappen, Amsterdam, vol. 1,

1892, p. 74-
5 Einstein, op. cit., contains a popular exposition.
6 W. de Sitter, Physikalische Zeitschrift, vol. 14, 1913, PP. 429, 1267.
1 Lorentz, loc. ¢it. For a simple derivation of the Lorentz transformation, see Einstein, op. cit., Ap-

pendix 1, p. 130.

14 (p. 13). Laws of Motion. Because of their importance, I reproduce here the
three laws in the original Latin:

Lex I (in editions of 1687 and 1713). Corpus omne perseverare in statu suo
quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis
cogitur statum illum mutare.

Lex I (inedition of 1726). Corpus omne perseverare in statu suo quiescendi vel
movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur
statum suum mutare.

Tex I1. Mutationem motis proportionalem esse vi motrici impressac, et fieri
secundum lineam rectam qua vis illa imprimitur. :

Lex III. Actioni contrariam semper et aequalem csse reactionem: sive cor-
porum duorum actiones in s¢ MUEUO SCMPeEr esse aequales et in partes contrarias
dirigi.

The first law is frequently called the “law of inertia.” Students of relativity
point out that we do not know of any body in Nature which is at absolute rest,
not on the earth nor on the sun or stars; that there is rest only with respect to some
system of codrdinates. Einstein gave a critical examination of what he called 2
“Galileon system of codrdinates,” a system in which the law of inertia holds
relative to it, and in which no gravitational field exists which is therefore not
rigidly attached to the earth. «“The visible fixed stars are bodies for which the law
of ineftia certainly holds to a high degree of approximation.... The laws of
mechanics of Galileo-Newton can be regarded valid only for a Galileon system
of codrdinates.” See Note 13.

1 Einstein, op. cit., pp. 12, 13.

I give a few additional references to the laws of motion:

Sarmuel Horsley (the editor of Newton's Opera, 1779-1785) gave a metaphysical discussion of New-
ton's laws of motion, which is printed in Lord Meonboddo and Some of His Contemporaries (ed. Wil-
liam Knight), London, 1900, pp. 281-284, 268, 302-305.

J. C. Maxwell, Matter and Motion, London, 1876.

Sir W. Thomson and P. G. Tait, Treatise on Natural Philosophy, Part 1, Cambridge, 1879.

K. Pearson, Grammar of Science, London, 1900, pp. 321-327, 533-536; Appendix, Notes 1 and 2.

E. Mach, Die Mechanik in ihrer Entwicklung, ed. 8, Leipzig, 1921.

E. Freundlich, Grundlagen der einsteinschen Gravitations Theorie, Berlin, 1920, P. 42.

A. S, Eddington, Space, Time, and Gravitation, Cambridge, 1920, Chap. 1x.
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15 (pp. 13, 45). Second Law of Motion. Force. By Newton’s second Definition,
“quantity of motion” (momentum) arises “from the velocity and quantity of
matter conjointly,” that is, from me. By Newton’s second Law of Motion, “change
of motion,” that is, change in the quantity of motion, “is proportional to the mo-
tive force impressed.” Thus, we have “change of motion” as the measure of the
force which produces it. Thus arose the measurement of force by the product of
mass and acceleration. This concept of force has played a fundamental réle in
mechanics from the time of Newton to the close of the nineteenth century. It will
continue to play a basic réle in mechanics involving velocities that are small in
comparison to the velocity of light. But as a concept in general cosmological
mechanics it has faded into the background. A most far-reaching experimental
result was obtained in 1gor by W. Kaufmann, namely, that the mass of an elec-
tron increases rapidly as its speed nears the velacity of light.* The invariance of
mass in Newtonian mechanics was thus shown to be incorrect. (See Note 11.)
The Newtonian force of gravitational attraction between two bodies varies as the
product of their masses, and inversely as the square of the distance. This force
was rendered ambiguous by recent research, because (1) mass depends on veloc-
ity and (2) distance, according to the theory of relativity, depends upon the loca-
tion of the observer. Einstein’s gravitational theory of 1915 undermines the be-
lief in the reality of gravitation as a “force.” But his theory of 1915 does not in-
clude similar treatment of electromagnetic forces. Generalizations of Einstein’s
theory of 1915, to embrace also electromagnetic forces, were made in somewhat
different ways by H. Weyl® in 1918, by Eddington® in 1921, and by Einstein® him-
self in 1929. '

1VW. Kaufmann, Gottinger Nachrichten, Nov. 8, 1901; see also the volumes for 1902 and 1903.

2 H. Weyl, Sitzungsberichte der Preuss. Akademie d. Wissensch., Phys.-Math. Klasse, 1918, p. 465.

S E. Eddington, Proceedings of the Royal Society of London, A 99, 1921, p. 104.

4 Einstein, “Zur cinheitlichen Feldtheorie,” Sitzungsberichte der Preuss. Akademie d. Wissensch.,
Phys.—-Math. Klasse, 1929, 1. )

16 (pp. 21, 36) . Book 1, Scholium and Lemma x1. Obsolete mathematical expres-
sions and notations. In Newton’s Latin editions of the Principia, as well as in
Motte’s translation into English, there occur certain mathematical expressions
which are no longer used in mathematics and are therefore not immediately
understood by a reader familiar only with modern phraseology. I have altered
the translation by substituting for the old, corresponding modern terminology.
Most frequent of the obsolete terms are “duplicate ratio,” “subduplicate ratio,”
“triplicate ratio,” “subtriplicate ratio,” “sesquiplicate ratio,” “subsesquiplicate ra-
tio,” “sesquialteral ratio.” For these I have used, respectively, the terms “square
of the ratio,” “square root of the ratio,” “cube of the ratio,” “cube root of the ra-
tio,” “34th power of the ratio,” “Z5th power of the ratio,” “ratio of 3t0 2.” In a
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